

UNIVERSITY

Directorate Of Distance Education (DDE) KUPPAM-517426 Assignment for II Year M.Sc Mathematics

### PAPER-I: TOPOLOGY AND FUNCTIONAL ANALYSIS

#### Answer any three questions

3x10=30

- 1). Prove that any closed subspace of a compact space is compact.
- 2). State and prove Urysohn's lemma and Teiz Extension theorem.
- 3). a) Prove that the product of any non-empty class of connected space is connected.
  - b) Prove that any continuous image of a connected space is connected.
- 4). State and prove Open Mapping theorem.
- 5). a) If  $N_1$ ,  $N_2$  are normal operators on H with the properties that either computes with the adjoint of others. Then show that
  - i)  $N_1+N_2$ , ii)  $N_1N_2$  are normal.
  - b) An operator on N in H is normal iff  $||N^*x|| = ||Nx|| \forall x \in H$ .

## Paper – II Probability and statistics

- a) State and prove Bayes theorem
   b) Box I contains 2000 Companies of which 5% are defective. Box II contains 500
   Components of which 40% are defective two other boxes i.e., Box III & IV contains 1000
   components one of the above boxes and remove from it at random at single component.
   What is the probability that this component is defective?
- 2. a) State and prove chebyscheris theorem
  b) if x is a Poisson variate such that p(x=0)=p(x=2)+3p(x=4) find (i) Means of x (ii) P(X≤Z)
- 3. write in brief different types of samplings
- 4. a) if a binomial distribution to the following data and test for goodness of fit

| Х | 0  | 1  | 2  | 3  | 4 |
|---|----|----|----|----|---|
| F | 28 | 62 | 46 | 10 | 4 |

b) Two independent samples of 8 and 7 items respectively had the following

| Sample I  | 9  | 11 | 13 | 11 | 16 | 10 | 12 | 14 |
|-----------|----|----|----|----|----|----|----|----|
| Sample II | 11 | 13 | 11 | 14 | 10 | 8  | 10 | -  |

5. a) Explain the method of fitting a second degree parabola by using the principle of least squares

| b | ) fit | а | straight | to | the | foll | owing | data |
|---|-------|---|----------|----|-----|------|-------|------|
| U | ) III | а | suargin  | ω  | unc | 1011 | owing | uata |

| Х | 1   | 2 | 3   | 4 | 6 | 8 |
|---|-----|---|-----|---|---|---|
| F | 2.4 | 3 | 3.6 | 4 | 5 | 6 |

# Paper – III Discrete Mathematics

- 1. Explain "Connectives" with suitable examples and truth tables
- 2. a) If f:  $X \rightarrow Y$  and g:  $Y \rightarrow Z$  and both f and g are on to show that gof is also onto. Is gof one to one if both g and f are to one? Justify
  - b) At  $f(x) = X^2 3n + 2$  final (i)  $f(X^2)$  (ii) f(y-x) (iii) f(x+3)
- 3. a) state and prove binomial theorem
- b) Obtain coefficient of  $X^5$  in (a+bx+cx<sup>2</sup>)
- 4. a) prove that the isomorphism of a simple graph is an equivalence relation
  - b) Explain isomorphism of the graphs with suitable example
- 5. Prove that a connected graph is Euleriah if and if the degree of each of its vertices is even

### PAPER-IV: COMPUTER ALGORITHM AND PROBLEM SOLVING

Answer any three questions

- 3x10=30
- 1. (a) Explain algorithms representations through flow charts
  - (b) What is the algorithm for finding cross sales and discount.
- 2. What is the Concept of Flow charts and their algorithms for manipulation of arrays to transfer contents of one memory array to another
- 3. Describe drafting entries in the decision tables for the same.
- 4. Explain about the concept of variables and loop.
- 5. Explain Subroutine and structured problem solving.

Answer any three questions

- 1). Explain operators in 'C' programming.
- 2). What is an array? Explain two dimensional and multi dimensional arrays.
- 3). What is string? Explain different string functions with an example.
- 4). What is a stack? Write the applications of a stack.
- 5). What is a list? Explain various operations on a list.